X. Fafoutis, A. Vafeas, B. Janko, S. Sherratt, J. Pope, A. Elsts, E. Mellios, G. Hilton, G. Oikonomou, R. Piechocki, I. Craddock

Abstract:
Wearable technologies are valuable tools that can encourage people to monitor their own well-being and facilitate timely health interventions. In this paper, we present SPW-2; a low-profile versatile wearable sensor that employs two ultra low power accelerometers and an optional gyroscope. Designed for minimum maintenance and a long-term operation outside the laboratory, SPW-2 is able to oer a battery lifetime of multiple months. Measurements on its wireless performance in a real residential environment with thick brick walls, demonstrate that SPW-2 can fully cover a room and - in most cases - the adjacent room, as well.
Reference:
X. Fafoutis, A. Vafeas, B. Janko, S. Sherratt, J. Pope, A. Elsts, E. Mellios, G. Hilton, G. Oikonomou, R. Piechocki, I. Craddock, "Designing Wearable Sensing Platforms for Healthcare in a Residential Environment", EAI Endorsed Transactions on Pervasive Health and Technology, European Alliance for Innovation, 17(12), 2017
Bibtex Entry:
@article{Fafoutis-2017-eai,
  title     = {Designing Wearable Sensing Platforms for Healthcare in a Residential Environment},
  author    = {Xenofon Fafoutis and Antonis Vafeas and Balazs Janko and Simon Sherratt and James Pope and Atis Elsts and Evangelos Mellios and Geoffrey Hilton and George Oikonomou and Robert Piechocki and Ian Craddock},
  year      = {2017},
  month     = {9},
  doi       = {10.4108/eai.7-9-2017.153063},
  volume    = {17},
  journal   = {EAI Endorsed Transactions on Pervasive Health and Technology},
  issn      = {2411-7145},
  publisher = {European Alliance for Innovation},
  number    = {12},
  gsid = {1445270239734662268},
  oa-url = {https://research-information.bristol.ac.uk/en/publications/designing-wearable-sensing-platforms-for-healthcare-in-a-residential-environment(5a9756d4-c840-479d-a989-2e8bbaa9f0ff).html},
  abstract  = {Wearable technologies are valuable tools that can encourage people to monitor their own well-being and facilitate timely health interventions. In this paper, we present SPW-2; a low-profile versatile wearable sensor that employs two ultra low power accelerometers and an optional gyroscope. Designed for minimum maintenance and a long-term operation outside the laboratory, SPW-2 is able to oer a battery lifetime of multiple months. Measurements on its wireless performance in a real residential environment with thick brick walls, demonstrate that SPW-2 can fully cover a room and - in most cases - the adjacent room, as well.},
}
Powered by bibtexbrowser

Designing Wearable Sensing Platforms for Healthcare in a Residential Environment