A. Elsts, X. Fafoutis, J. Pope, G. Oikonomou, R. Piechocki, I. Craddock

Abstract:
The upcoming Internet of Things (IoT) applications include real-time human activity monitoring with wearable sensors. Compared to the traditional environmental sensing with low-power wireless nodes, these new applications generate a constant stream of a much higher rate. Nevertheless, the wearable devices remain battery powered and therefore restricted to low-power wireless standards such as IEEE 802.15.4 or Bluetooth Low Energy (BLE). Our work tackles the problem of building a reliable autonomous schedule for forwarding this kind of dynamic data in IEEE 802.15.4 TSCH networks. Due to the a priori unpredictability of these data source locations, the quality of the wireless links, and the routing topology of the forwarding network, it is wasteful to reserve the number of slots required for the worst-case scenario; under conditions of high expected datarate, it is downright impossible. The solution we propose is a hybrid approach where dedicated TSCH cells and shared TSCH slots coexist in the same schedule. We show that under realistic assumptions of wireless link diversity, adding shared slots to a TSCH schedule increases the overall packet delivery rate and the fairness of the system.
Reference:
A. Elsts, X. Fafoutis, J. Pope, G. Oikonomou, R. Piechocki, I. Craddock, "Scheduling high-rate unpredictable traffic in IEEE 802.15.4 TSCH networks", in Proc. IEEE DCOSS, 2017
Bibtex Entry:
@INPROCEEDINGS{Elsts-2017-dcoss,
  title = {Scheduling high-rate unpredictable traffic in IEEE 802.15.4 TSCH networks},
  keywords = {Time slotted channel hopping, scheduling, Internet of Things},
  author = {Atis Elsts and Xenofon Fafoutis and James Pope and George Oikonomou and Robert Piechocki and Ian Craddock},
  year = {2017},
  month = {3},
  booktitle = {Proc. IEEE DCOSS},
  gsid = {11148583356626153925},
  publisher = {IEEE},
  url = {https://research-information.bristol.ac.uk/en/publications/scheduling-highrate-unpredictable-traffic-in-ieee-802154-tsch-networks(74903df9-1c10-438c-8a05-7a4ccad936ac).html},
  abstract = {The upcoming Internet of Things (IoT) applications include real-time human activity monitoring with wearable sensors. Compared to the traditional environmental sensing with low-power wireless nodes, these new applications generate a constant stream of a much higher rate. Nevertheless, the wearable devices remain battery powered and therefore restricted to low-power wireless standards such as IEEE 802.15.4 or Bluetooth Low Energy (BLE). Our work tackles the problem of building a reliable autonomous schedule for forwarding this kind of dynamic data in IEEE 802.15.4 TSCH networks. Due to the a priori unpredictability of these data source locations, the quality of the wireless links, and the routing topology of the forwarding network, it is wasteful to reserve the number of slots required for the worst-case scenario; under conditions of high expected datarate, it is downright impossible. The solution we propose is a hybrid approach where dedicated TSCH cells and shared TSCH slots coexist in the same schedule. We show that under realistic assumptions of wireless link diversity, adding shared slots to a TSCH schedule increases the overall packet delivery rate and the fairness of the system.},
}
Powered by bibtexbrowser

Scheduling high-rate unpredictable traffic in IEEE 802.15.4 TSCH networks