T. Edwan, L. Guan, G. Oikonomou, I. Phillips

Abstract:
TCP-Illinois aims to address TCP's low throughput when operating in high-speed, high-delay networks. Previous research has shown that, due to its linear increase behaviour and to its relatively long congestion epochs, TCP-Illinois exhibits sub-optimal scaling behaviour with an increasing path Bandwidth-Delay Product (BDP). This paper discloses our contributions towards improving the aggressiveness and responsiveness of loss-based TCP congestion control algorithms. We formally show that higher order versions (of power n) of the delay functions used by TCP-Illinois become more aggressive and responsive with an increasing value of n. Based on this finding, we propose three variants: i) a second order (quadratic) version of additive increase and multiplicative decrease (TCP-Q), ii) a second order multiplicative decrease only (TCP-Fq) and iii) a sub-linear multiplicative decrease only (TCP-Fs). By modifying the TCP-Illinois code in the GNU/Linux kernel, we obtained the three corresponding modules and used them for our simulations using the TCP/Linux patch for ns2. Based on standardised congestion control metrics, we conducted a comparative analysis between our variants and a number of relevant high speed TCP algorithms. Simulation results agree with our analytical findings; compared to TCP-Illinois, TCP-Q exhibits shorter congestion epochs and thus better responsiveness and convergence.
Reference:
T. Edwan, L. Guan, G. Oikonomou, I. Phillips, "Higher Order Delay Functions for Delay-Loss Based TCP Congestion Control", in Proc. 6th Wireless Advanced, London, UK, pp. 1-6, 2010
Bibtex Entry:
@INPROCEEDINGS{Edwan-2010-1-wireless-advanced,
	author = {Talal Edwan and Lin Guan and George Oikonomou and Iain Phillips},
	title = {{Higher Order Delay Functions for Delay-Loss Based TCP Congestion Control}},
	year = {2010},
	month = {June},
	address = {London, UK},
	booktitle = {{Proc. 6th Wireless Advanced}},
	publisher = {ieee},
	pages = {1--6},
	doi = {10.1109/WIAD.2010.5544874},
	url = {http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5544874},
	gsid = {788159838287487244},
	abstract = {TCP-Illinois aims to address TCP's low throughput when operating in high-speed, high-delay networks. Previous research has shown that, due to its linear increase behaviour and to its relatively long congestion epochs, TCP-Illinois exhibits sub-optimal scaling behaviour with an increasing path Bandwidth-Delay Product (BDP). This paper discloses our contributions towards improving the aggressiveness and responsiveness of loss-based TCP congestion control algorithms. We formally show that higher order versions (of power n) of the delay functions used by TCP-Illinois become more aggressive and responsive with an increasing value of n. Based on this finding, we propose three variants: i) a second order (quadratic) version of additive increase and multiplicative decrease (TCP-Q), ii) a second order multiplicative decrease only (TCP-Fq) and iii) a sub-linear multiplicative decrease only (TCP-Fs). By modifying the TCP-Illinois code in the GNU/Linux kernel, we obtained the three corresponding modules and used them for our simulations using the TCP/Linux patch for ns2. Based on standardised congestion control metrics, we conducted a comparative analysis between our variants and a number of relevant high speed TCP algorithms. Simulation results agree with our analytical findings; compared to TCP-Illinois, TCP-Q exhibits shorter congestion epochs and thus better responsiveness and convergence.}
}
Powered by bibtexbrowser

Higher Order Delay Functions for Delay-Loss Based TCP Congestion Control