P. Cooper, T. Crick, T. Tryfonas, G. Oikonomou

Abstract:
In this paper we apply a whole-life assessment approach to estimate the environmental impact of the use of ICT of an individual within the UK over a one-year period. By estimating the energy and data consumption of an average user's use of a typical device, and estimating the associated energy usage (and thus CO2 produced) of each stage in the data chain, we are able to calculate the summed CO2 value for embodied carbon of an average device. Overall, device energy is seen to dominate; within device, desktops dominate, both due to their high energy use for a given task, but also their high standby power, which is the most significant point of behaviour-driven waste. Geographical, behavioural and chronological factors are all evaluated to be highly significant to the impact of a user's ICT use, along with a number of secondary factors. Finally, we present policy recommendations to further the understanding of the factors affecting the environmental impact of ICT, particularly focusing on sustainability, resource efficiency and the social implications of ICT in a low-carbon transformation.
Reference:
P. Cooper, T. Crick, T. Tryfonas, G. Oikonomou, "Whole-Life Environmental Impacts of ICT Use", in Proc. 2015 IEEE Globecom Workshops (GC Wkshps), 2015
Bibtex Entry:
@INPROCEEDINGS{Cooper-2015-gsict,
  title = {Whole-Life Environmental Impacts of ICT Use},
  author = {Peter Cooper and Tom Crick and Theo Tryfonas and George Oikonomou},
  publisher = {IEEE},
  year = {2015},
  month = dec,
  booktitle = {Proc. 2015 IEEE Globecom Workshops (GC Wkshps)},
  doi = {10.1109/GLOCOMW.2015.7414033},
  gsid = {2533471677417562092},
  abstract = {In this paper we apply a whole-life assessment approach to estimate the environmental impact of the use of ICT of an individual within the UK over a one-year period. By estimating the energy and data consumption of an average user's use of a typical device, and estimating the associated energy usage (and thus CO2 produced) of each stage in the data chain, we are able to calculate the summed CO2 value for embodied carbon of an average device. Overall, device energy is seen to dominate; within device, desktops dominate, both due to their high energy use for a given task, but also their high standby power, which is the most significant point of behaviour-driven waste. Geographical, behavioural and chronological factors are all evaluated to be highly significant to the impact of a user's ICT use, along with a number of secondary factors. Finally, we present policy recommendations to further the understanding of the factors affecting the environmental impact of ICT, particularly focusing on sustainability, resource efficiency and the social implications of ICT in a low-carbon transformation.},
}
Powered by bibtexbrowser

Whole-Life Environmental Impacts of ICT Use