2019
[1]
R. Singh, S. Armour, A. Khan, M. Sooriyabandara, G. Oikonomou, "The Advantage of Computation Offloading in Multi-Access Edge Computing", in Proc. IEEE FMEC, 2019 (accepted, to appear)
@inproceedings{Singh-2019-FMEC, title = {The Advantage of Computation Offloading in Multi-Access Edge Computing}, author = {Raghubir Singh and Simon Armour and Aftab Khan and Mahesh Sooriyabandara and George Oikonomou}, year = {2019}, month = jun, booktitle = {Proc. IEEE FMEC}, note = {accepted, to appear}, oa-url = {https://research-information.bristol.ac.uk/en/publications/the-advantage-of-computation-offloading-in-multiaccess-edge-computing(c528b331-9ae0-436f-961e-9976ed62bba9).html }, abstract = {Computation offloading plays a critical role inreducing task completion time for mobile devices. The advantagesof computation offloading to cloud resources in Mobile CloudComputing have been widely considered. In this paper, we haveinvestigated different scenarios for offloading to less distantMulti-Access Edge Computing (MEC) servers for multiple userswith a range of mobile devices and computational tasks. Wepresent detailed simulation data for how offloading can bebeneficial in a MEC network with varying quantitative mobileuser demand, heterogeneity in mobile device on-board and MECprocessor speeds, computational task complexity, communicationspeeds, link access delays and mobile device user numbers.Unlike previous work where simulations considered only limitedcommunication speeds for offloading, we have extended the rangeof link speeds and included two types of communication delay.We find that more computationally complex applications areoffloaded preferentially (especially with the higher server:mobiledevice processor speed ratios) while low link speeds and anydelays caused by network delays or excessive user numbersdegrade any advantages in reduced task completion times offeredby offloading. Additionally, significant savings in energy usage bymobile devices are guaranteed except at very low link speeds.}, }
Computation offloading plays a critical role inreducing task completion time for mobile devices. The advantagesof computation offloading to cloud resources in Mobile CloudComputing have been widely considered. In this paper, we haveinvestigated different scenarios for offloading to less distantMulti-Access Edge Computing (MEC) servers for multiple userswith a range of mobile devices and computational tasks. Wepresent detailed simulation data for how offloading can bebeneficial in a MEC network with varying quantitative mobileuser demand, heterogeneity in mobile device on-board and MECprocessor speeds, computational task complexity, communicationspeeds, link access delays and mobile device user numbers.Unlike previous work where simulations considered only limitedcommunication speeds for offloading, we have extended the rangeof link speeds and included two types of communication delay.We find that more computationally complex applications areoffloaded preferentially (especially with the higher server:mobiledevice processor speed ratios) while low link speeds and anydelays caused by network delays or excessive user numbersdegrade any advantages in reduced task completion times offeredby offloading. Additionally, significant savings in energy usage bymobile devices are guaranteed except at very low link speeds.
Powered by bibtexbrowser
Conditions for Downloading Publications from This Site.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without explicit permission from the copyright holder.

Filter / Sort
Reset