P. Ilia, G. Oikonomou, T. Tryfonas, "Cryptographic Key Exchange in IPv6-Based Low Power, Lossy Networks", in Proc. Workshop in Information Theory and Practice (WISTP 2013), ser. Lecture Notes in Computer Science, 7886, pp. 34-49, 2013
The IEEE 802.15.4 standard for low-power radio communications defines techniques for the encryption of layer 2 network frames but does not discuss methods for the establishment of encryption keys. The constrained nature of wireless sensor devices poses many challenges to the process of key establishment. In this paper, we investigate whether any of the existing key exchange techniques developed for traditional, application-centric wireless sensor networks (WSN) are applicable and viable for IPv6 over Low power Wireless Personal Area Networks (6LoWPANs). We use Elliptic Curve Cryptography (ECC) to implement and apply the Elliptic Curve Diffie Hellman (ECDH) key exchange algorithm and we build a mechanism for generating, storing and managing secret keys. The mechanism has been implemented for the Contiki open source embedded operating system. We use the Cooja simulator to investigate a simple network consisting of two sensor nodes in order to identify the characteristics of the ECDH technique. We also simulate a larger network to examine the solution's performance and scalability. Based on those results, we draw our conclusions, highlight open issues and suggest further work.
Conditions for Downloading Publications from This Site.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without explicit permission from the copyright holder.

Filter / Sort