2017
[1]
X. Fafoutis, A. Vafeas, B. Janko, S. Sherratt, J. Pope, A. Elsts, E. Mellios, G. Hilton, G. Oikonomou, R. Piechocki, I. Craddock, "Designing Wearable Sensing Platforms for Healthcare in a Residential Environment", EAI Endorsed Transactions on Pervasive Health and Technology, European Alliance for Innovation, 17(12), 2017
@article{Fafoutis-2017-eai, title = {Designing Wearable Sensing Platforms for Healthcare in a Residential Environment}, author = {Xenofon Fafoutis and Antonis Vafeas and Balazs Janko and Simon Sherratt and James Pope and Atis Elsts and Evangelos Mellios and Geoffrey Hilton and George Oikonomou and Robert Piechocki and Ian Craddock}, year = {2017}, month = {9}, doi = {10.4108/eai.7-9-2017.153063}, volume = {17}, journal = {EAI Endorsed Transactions on Pervasive Health and Technology}, issn = {2411-7145}, publisher = {European Alliance for Innovation}, number = {12}, gsid = {1445270239734662268}, oa-url = {https://research-information.bristol.ac.uk/en/publications/designing-wearable-sensing-platforms-for-healthcare-in-a-residential-environment(5a9756d4-c840-479d-a989-2e8bbaa9f0ff).html}, abstract = {Wearable technologies are valuable tools that can encourage people to monitor their own well-being and facilitate timely health interventions. In this paper, we present SPW-2; a low-profile versatile wearable sensor that employs two ultra low power accelerometers and an optional gyroscope. Designed for minimum maintenance and a long-term operation outside the laboratory, SPW-2 is able to oer a battery lifetime of multiple months. Measurements on its wireless performance in a real residential environment with thick brick walls, demonstrate that SPW-2 can fully cover a room and - in most cases - the adjacent room, as well.}, }
Wearable technologies are valuable tools that can encourage people to monitor their own well-being and facilitate timely health interventions. In this paper, we present SPW-2; a low-profile versatile wearable sensor that employs two ultra low power accelerometers and an optional gyroscope. Designed for minimum maintenance and a long-term operation outside the laboratory, SPW-2 is able to oer a battery lifetime of multiple months. Measurements on its wireless performance in a real residential environment with thick brick walls, demonstrate that SPW-2 can fully cover a room and - in most cases - the adjacent room, as well.
Powered by bibtexbrowser
Conditions for Downloading Publications from This Site.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without explicit permission from the copyright holder.

Filter / Sort
Reset