A. Fragkiadakis, G. Oikonomou, H. Pöhls, E. Tragos, M. Wojcik, T. Tryfonas, "Securing Communications Among Severely Constrained, Wireless Embedded Devices", in Engineering Secure IoT Systems, IET, 2016
The goal of this chapter is to present the ideas and concepts of the EU-FP7 SMARTCITIES project “RERUM” with regards to improving the communication security in IoT-based smart city applications. The chapter tries to identify the gaps in previous IoT frameworks with regards to security and privacy and shows the advances that RERUM brings to the IoT community with its significant focus on embedded device functionalities. The goal of the RERUM secure communications framework is to provide light-weight solutions so that they can be applied even in the very constrained IoT devices. Solutions for lightweight encryption (based on the relatively new theory of Compressive Sensing), on transport-layer security (based on DTLS) and on integrity verification of data (using on-device signatures) are presented in detail, discussing their applicability and the benefits they bring to IoT.
H. Pöhls, V. Angelakis, S. Suppan, K. Fischer, G. Oikonomou, E. Tragos, R. Rodriguez, T. Mouroutis, "RERUM: Building a Reliable IoT upon Privacy- and Security- enabled Smart Objects", in Proc. Workshop on IoT Communications and Technologies (WCNC 2014), Istanbul, Turkey, 2014
The Internet of Things (IoT) provides a platform for the interconnection of a plethora of smart objects. It has been widely accepted for providing Information and Communication Technologies (ICT) applications in many ``smart'' environments, such as cities, buildings, metering, and even agriculture. For several reasons though such applications have yet to achieve wide adoption; a major hurdle is the lack of user trust in the IoT and its role in everyday activities. RERUM, a recently started FP7 European Union project. aims to develop a framework which will allow IoT applications to consider security and privacy mechanisms early in their design phase, ensuring a configurable balance between reliability (requiring secure, trustworthy and precise data) and privacy (requiring data minimization for private information, like location). The RERUM framework will comprise an architecture, built upon novel network protocols and interfaces as well as the design of smart objects hardware. To highlight the challenges and evaluate the framework, RERUM will employ several Smart City application scenarios, which will be deployed and evaluated in real-world testbeds in two Smart Cities participating in the project. Here we detail the key technologies RERUM will investigate over the coming three years to reach its vision for IoT security, privacy and trust.
E. Tragos, V. Angelakis, A. Fragkiadakis, D. Gundlegård, C. Nechifor, G. Oikonomou, H. Pöhls, A. Gavras, "Enabling Reliable and Secure IoT-based Smart City Applications", in Proc. IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), Budapest, Hungary, 2014
Smart Cities are considered recently as a promising solution for providing efficient services to citizens with the use of Information and Communication Technologies. With the latest advances on the Internet of Things, a new era has emerged in the Smart City domain, opening new opportunities for the development of efficient and low-cost applications that aim to improve the Quality of Life in cities. Although there is much research in this area, which has resulted in the development of many commercial products, significant parameters like reliability, security and privacy have not been considered as very important up until now. The newly launched FP7-SmartCities-2013 project RERUM aims to build upon the advances in the area of Internet of Things in Smart Cities and develop a framework to enhance reliability and security of smart city applications, with the citizen at the center of attention. This work presents four applications that will be developed within RERUM, gives a general description of the open reliability and security issues that have to be taken into account and gives an overall view of the solutions that RERUM will develop to address these issues.
Powered by bibtexbrowser
Conditions for Downloading Publications from This Site.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without explicit permission from the copyright holder.

Filter / Sort