2018
[1]
M. Dilmore, A. Doufexi, G. Oikonomou, "Analysing Interface Bonding in 5G WLANs", in Proc. CAMAD, 2018
@INPROCEEDINGS{Dilmore-2018-camad, title = {Analysing Interface Bonding in 5G WLANs}, author = {Michael Dilmore and Angela Doufexi and George Oikonomou}, year = {2018}, booktitle = {Proc. CAMAD}, publisher = {IEEE}, doi = {10.1109/CAMAD.2018.8514934}, abstract = {This work proposes a simple analytical model for interface bonding in 5G WLANs at the 2.4 GHz and 60 GHz ISM bands. Based on previous analysis of the IEEE 802.11 DCF by Bianchi and Chatzimisios, an expression for the predicted throughput of the bonded interface is given as a function of the number of competing wireless nodes in each network.The model is implemented and validated in MatLab using the Monte Carlo method. When applied to a practical interface bonding scenario, the model results suggest a practical limit of fifteen 2.4 GHz nodes when bonded with a 60 GHz interface, above which the resulting compound throughput is less than that of a single 60 GHz interface.}, }
This work proposes a simple analytical model for interface bonding in 5G WLANs at the 2.4 GHz and 60 GHz ISM bands. Based on previous analysis of the IEEE 802.11 DCF by Bianchi and Chatzimisios, an expression for the predicted throughput of the bonded interface is given as a function of the number of competing wireless nodes in each network.The model is implemented and validated in MatLab using the Monte Carlo method. When applied to a practical interface bonding scenario, the model results suggest a practical limit of fifteen 2.4 GHz nodes when bonded with a 60 GHz interface, above which the resulting compound throughput is less than that of a single 60 GHz interface.
Powered by bibtexbrowser
Conditions for Downloading Publications from This Site.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without explicit permission from the copyright holder.

Filter / Sort
Reset